Seafloor topography refinement from multisource data using genetic algorithm—backpropagation neural network

Author:

Wu Chunhong1,Su Xinwen2,Xu Chuang134,Jian Guangyu1,Li Jinbo5

Affiliation:

1. Department of Geodesy and Geomatics Engineering, School of Civil and Transportation, Engineering, Guangdong University of Technology , Guangzhou 510006 , China

2. Department of Geography, University College London , Gower Street, London WC1E 6BT , UK

3. Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangdong University of Technology , Guangzhou 510006 , China

4. National Precise Gravity Measurement Facility, Huazhong University of Science and Technology , Wuhan 430074 , P.R.China

5. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430077 , China

Abstract

SUMMARY During the inversion of seafloor topography (ST) using the backpropagation neural network (BPNN), the random selection of parameters may decrease the accuracy. To address this issue and achieve a more efficient global search, this paper introduces a genetic algorithm-backpropagation (GA-BP) neural network. Benefiting from the global search and parallel computing capabilities of the GA, this study refines the ST of the South China Sea using multisource gravity data. The results indicate that the GA-BP model, with a root mean square (RMS) value of 126.0 m concerning ship-measured water depths. It is noteworthy that when dealing with regions characterized by sparse survey line distributions, the GA-BP neural network stronger robustness compared to BPNN, showing less sensitivity to the distribution of survey data. Furthermore, the paper explores the influence of different data pre-processing methods on the neural network inversion of sea depths. This research introduces an optimization algorithm that reduces instability during BPNN initialization, resulting in a more accurate prediction of ST.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Huazhong University of Science and Technology

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3