Resolving a ramp-flat structure from combined analysis of co- and post-seismic geodetic data: an example of the 2015 Pishan Mw 6.5 earthquake

Author:

Zhao Xiong12,Wen Yangmao134ORCID,Xu Caijun134ORCID,He Kefeng1,Dahm Torsten25

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University , Wuhan 430079 , China

2. GFZ German Research Centre for Geosciences , Physics of Earthquakes and Volcanoes, Potsdam 14467 , Germany

3. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University , Wuhan 430079 , China

4. Hubei Luojia Laboratory , Wuhan 430079 , China

5. Institute of Geosciences, University of Potsdam , Potsdam 14469 , Germany

Abstract

SUMMARY Previous studies have shown that it is difficult to determine whether the 2015 Pishan earthquake occurred on a uniform fault or a ramp-flat fault with variable dip angles due to the similar goodness of data fit to coseismic and afterslip models on these two fault models. Here, we first present the InSAR deformation obtained from both ascending and descending orbits, covering the coseismic period and cumulative 5-yr period after the 2015 Pishan earthquake. We then determine the preferred fault geometry by the spatial distributions between the positive Coulomb failure stress change triggered by main shock and the afterslip. Based on the preferred fault model, we finally use a combined model to determine the contributions of elastic and viscoelastic deformation in the post-seismic deformation. We find that the Pishan earthquake prefers to occur on a ramp-flat fault, and the coseismic slip is mainly distributed at a depth of 9–13 km, with a maximum slip of about 1.3 m. The post-seismic deformation is primarily governed by afterslip, as the poroelastic rebound-induced deformation fails to account for the observed post-seismic deformation and the contributions from the viscoelastic relaxation mechanism can be considered negligible in the combined model. Moreover, the modelled stress-driven afterslip and observed kinematic afterslip have good consistency, and the difference between the root mean square error of the two afterslip models is only 4.3 mm. The results from the afterslip model indicate that both of the updip and downdip directions distribute the afterslip, and slip in the updip direction is greater than that of the downdip direction. Meanwhile, the maximum cumulative afterslip after 5 yr is approximately 0.26 m which is equivalent to a released seismic moment of a Mw 6.47.

Funder

National Natural Science Foundation of China

Ministry of Education

Wuhan University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3