Revisiting the OBS seafloor compliance signal removal with a stationarity and stacking-based approach: the BRUIT-FM toolbox

Author:

Rebeyrol Simon1ORCID,Ker Stéphan1ORCID,Duval Laurent23,Crawford Wayne C4

Affiliation:

1. Geo-Ocean UMR 6538 CNRS – Ifremer – UBO – UBS , 1625 route de Sainte-Anne CS 10070 - 29280 Plouzané , France

2. ESIEE-Paris, Université Gustave Eiffel , F-77454 Marne-la-Vallée , France

3. IFP Energies nouvelles , 1-4 avenue du Bois-Préau, Rueil-Malmaison F-92852 , France

4. Géosciences marines, Institut de Physique du Globe de Paris , Paris , France

Abstract

SUMMARY This study focuses on improving the seafloor compliance noise removal method, which relies on estimates of the compliance transfer function frequency response (the deformation of the seafloor under long-period pressure waves). We first propose a new multiscale deviation analysis of broad-band ocean–bottom seismometer data to evaluate stationarity properties that are key to the subsequent analysis. We then propose a new approach to removing the compliance noise from the vertical channel data, by stacking daily estimated transfer function frequency responses over a period of time. We also propose an automated transient event detection and data selection method based on a cross-correlation criterion. As an example, we apply the method to data from the Cascadia Initiative (network 7D2011). We find that the spectral extent of long-period forcing waves varies significantly over time so that standard daily transfer function calculation techniques poorly estimate the transfer function frequency response at the lowest frequencies, resulting in poor denoising performance. The proposed method more accurately removes noise at these lower frequencies, especially where coherence is low, reducing the mean deviation of the signal in our test case by 27 per cent or more. We also show that our calculated transfer functions can be transferred across time periods. The method should allow better estimates of seafloor compliance and help to remove compliance noise at stations with low pressure-acceleration coherence. Our results can be reproduced using the BRUIT-FM Python toolbox, available at https://gitlab.ifremer.fr/anr-bruitfm/bruit-fm-toolbox.

Funder

French National Research Agency

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3