The expression of mantle seismic anisotropy in the global seismic wavefield

Author:

Wolf Jonathan1ORCID,Long Maureen D1,Frost Daniel A2,Nissen-Meyer Tarje3

Affiliation:

1. Department of Earth and Planetary Sciences, Yale University , New Haven, CT 06511 , USA

2. School of the Earth, Ocean and Environment, University of South Carolina , Columbia, SC 29208 , USA

3. Department of Earth Sciences, University of Oxford , Oxford OX1 3AN , UK

Abstract

SUMMARY The dependence of seismic wave speeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting. A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many standard analysis techniques can only be applied for certain epicentral distances and source–receiver geometries. To search for new ways to detect mantle anisotropy, instead of focusing on the sensitivity of individual phases, we investigate the wavefield as a whole: we apply a ‘wavefield differencing’ approach to (systematically) understand what parts of the seismic wavefield are most affected by splitting due to seismic anisotropy in the mantle. We analyze differences between synthetic global wavefields calculated for isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by splitting due to seismic anisotropy in the upper mantle. We show that PS can be used to fill in gaps in global coverage in shear-wave splitting data sets (for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at much shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. Our wavefield differencing results further hint at additional potential novel methods to detect and characterize splitting due to mantle seismic anisotropy.

Funder

Yale University

National Science Foundation

Publisher

Oxford University Press (OUP)

Reference110 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3