Real-time dual-parameter full-waveform inversion of GPR data based on robust deep learning

Author:

Xue Jiyan12ORCID,Huang Qinghua12,Wu Sihong13ORCID,Zhao Li12ORCID,Ma Bowen1

Affiliation:

1. Department of Geophysics, School of Earth and Space Sciences, Peking University , Beijing 100871 , China

2. Hongshan National Geophysical Observatory, Peking University , Beijing 100871 , China

3. Department of Earth and Atmospheric Sciences, University of Houston , Houston, TX 77204 , USA

Abstract

SUMMARY Ground penetrating radar (GPR) is becoming an increasingly important tool for understanding the shallow electrical structures of the Earth and planets due to its adaptability to harsh detection environments, efficient data acquisition and accurate detection results. GPR full-waveform can simultaneously constrain the permittivity and resistivity of the medium, providing more comprehensive geophysical information and reducing the non-uniqueness of inversion. However, given the highly non-linear inverse problem and the massive data resulted from high temporal and spatial samplings, traditional full-waveform inversion algorithms are prohibitively costly. Inspired by Google's vision semantic segmentation system, we develop a robust deep learning-guided network that integrates geology and geophysics knowledge to support the real-time translation of zero-offset GPR data into dual-parameter electrical structures. We test our proposed network using synthetic data, which demonstrates that the algorithm can provide an accurate dual-parameter electrical model from a GPR sounding in milliseconds on a common laptop PC, exhibiting high robustness and adaptability to noise interference and extreme values of model parameters. We also apply our network to field data gathered for pollutant investigation in the United States. The resulting dual-parameter structure provides a more comprehensive and realistic depiction of subsurface electrical properties and reveals the migration and ageing of pollutants. Our algorithm's real-time and accurate advantages are expected to further unleash the potential of GPR technology and enable it to play a more significant role in earth and planetary exploration.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3