Onset of thermal convection in a solid spherical shell with melting at either or both boundaries

Author:

Morison Adrien1ORCID,Labrosse Stéphane2ORCID,Deguen Renaud3ORCID,Alboussière Thierry2

Affiliation:

1. Physics and Astronomy, University of Exeter , Stocker Road, EX4 4QL, Exeter , UK

2. LGL-TPE, Université de Lyon, ENSL, UCBL, CNRS , 46 allée d'Italie, F-69364, Lyon , France

3. ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel , 38000 Grenoble , France

Abstract

SUMMARY Thermal convection in planetary solid (rocky or icy) mantles sometimes occurs adjacent to liquid layers with a phase equilibrium at the boundary. The possibility of a solid–liquid phase change at the boundary has been shown to greatly help convection in the solid layer in spheres and plane layers and a similar study is performed here for a spherical shell with a radius-independent central gravity subject to a destabilizing temperature difference. The solid–liquid phase change is considered as a mechanical boundary condition and applies at either or both horizontal boundaries. The boundary condition is controlled by a phase change number, Φ, that compares the timescale for latent heat exchange in the liquid side to that necessary to build a topography at the boundary. We introduce a numerical tool, available at https://github.com/amorison/stablinrb, to carry out the linear stability analysis of the studied setup as well as other similar situations (Cartesian geometry, arbitrary temperature and viscosity depth-dependent profiles). Decreasing Φ makes the phase change more efficient, which reduces the importance of viscous resistance associated to the boundary and makes the critical Rayleigh number for the onset of convection smaller and the wavelength of the critical mode larger, for all values of the radii ratio, γ. In particular, for a phase change boundary condition at the top or at both boundaries, the mode with a spherical harmonics degree of 1 is always favoured for Φ ≲ 10−1. Such a mode is also favoured for a phase change at the bottom boundary for small (γ ≲ 0.45) or large (γ ≳ 0.75) radii ratio. Such dynamics could help explaining the hemispherical dichotomy observed in the structure of many planetary objects.

Funder

Agence Nationale de la Recherche

ERC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3