Analysis of boron neutron capture reaction sensitivity using Monte Carlo simulation and proposal of a new dosimetry index in boron neutron capture therapy

Author:

Takeno Satoshi123,Tanaka Hiroki1,Ono Koji3,Mizowaki Takashi2,Suzuki Minoru1

Affiliation:

1. Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University , 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan

2. Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University , 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

3. Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University , 2–7 Daigaku-machi Takatsuki-shi, Osaka 569-8686, Japan

Abstract

Abstract Boron neutron capture therapy is a cellular-scale heavy-particle therapy. The factor determining the biological effects in the boron neutron capture reaction (BNCR) is the value of ${\alpha}_{boron}$, which is the alpha component in the Linear Quadratic (LQ) model. Recently, the factor determining the value of ${\alpha}_{boron}$ has been revealed to correspond to the structural features of the tumor tissue. However, the relationship and mechanism have yet to be thoroughly studied. In this study, we simulated BNCR in tissues using the Monte Carlo simulation technique and examined the factors that determine the value of ${\alpha}_{boron}$. According to this simulation, the nuclear-cytoplasmic (N/C) ratio, nuclear diameter and heterogeneity of the distribution of boron in the tissue have been suggested to determine the value of ${\alpha}_{boron}$. Moreover, we proposed Biological Effectivity (BE) as a new dosimetry index based on the surviving fraction (SF), extending the concept of absolute biological effectiveness (ABE) in a previous report.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3