Development of a novel airbag system of abdominal compression for reducing respiratory motion: preliminary results in healthy volunteers

Author:

Li Wenxin1,Konishi Kenta1,Ohira Keiichi1,Hirata Masanori1,Wakabayashi Kohei1,Aramaki Shuhei1,Sakamoto Masataka1,Nakamura Katsumasa1

Affiliation:

1. Department of Radiation Oncology , Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Japan

Abstract

Abstract This study used cine-magnetic resonance imaging (cine-MRI) to evaluate the safety and efficacy of a novel airbag system combined with a shell-type body fixation system in reducing respiratory motion in normal volunteers. The airbag system consists of a six-sided polygon inflatable airbag, a same shape plate, a stiff air supply tube, an air-supply pump and a digital pressure load cell monitor. Piezoelectric sensors were installed in the plate to detect compression pressure load changes; pressure load data were transferred to the digital pressure load cell monitor through Bluetooth. Five volunteers underwent cine-MRI with and without airbag compression to detect differences in the respiratory motion of the organs. The volunteers’ physiologic signs were stable during the experiment. The maximum inspiration pressure load was 4.48 ± 0.86 kgf (range, 4.00–6.00 kgf), while the minimum expiration pressure load was 3.69 ± 0.95 kgf (range, 2.8–5.3 kgf). Under airbag compression, the right diaphragm movement was reduced from 19.50 ± 6.43 mm to 9.60 ± 3.61 mm (P < 0.05) in the coronal plane and 23.12 ± 6.30 mm to 11.00 ± 3.69 mm (P < 0.05) in the sagittal plane. The left diaphragm, pancreas and liver in the coronal plane and the right kidney and liver in the sagittal plane also showed significant movement reduction. This novel airbag abdominal compression system was found to be safe during the experiment and successful in the reduction of internal organ respiratory motion and promises to be a convenient and efficient tool for clinical radiotherapy.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3