Development and dosimetric verification of 3D customized bolus in head and neck radiotherapy

Author:

Chatchumnan Nichakan1,Kingkaew Sakda1,Aumnate Chuanchom2,Sanghangthum Taweap3

Affiliation:

1. Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand

2. Metallurgy and Materials Science Research Institute Chulalongkorn University, Bangkok 10330, Thailand

3. Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Abstract The commercial flat bolus cannot form perfect contact with the irregular surface of the patient’s skin, resulting in an air gap. The purpose of this study was to evaluate the feasibility of using a 3D customized bolus from silicone rubber. The silicone rubber boluses were studied in basic characteristics. The 3D customized bolus was fabricated at the nose, cheek and neck regions. The point dose and planar dose differences were evaluated by comparing with virtual bolus. The hardness, thickness, density, Hounsfield unit (HU) and dose attenuation of the customized bolus were quite similar to a commercial bolus. When a 3D customized bolus was placed on the RANDO phantom, it can significantly increase buildup region doses and perfectly fit against the irregular surface shape. The average point dose differences of 3D customized bolus were −1.1%, while the commercial bolus plans showed −1.7%. The average gamma results for planar dose differences comparison of 3D customized bolus were 93.9%, while the commercial bolus plans were reduced to 91.9%. Overall, A silicone rubber bolus produced the feasible dosimetric properties and could save cost compared to a commercial bolus. The 3D printed customized bolus is a good buildup material and could potentially replace and improve treatment efficiency.

Funder

Chulalongkorn University

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3