Analysis of the relationship between LET, γH2AX foci volume and cell killing effect of carbon ions using high-resolution imaging technology

Author:

Oike Takahiro12,Kakoti Sangeeta34,Sakai Makoto1,Matsumura Akihiko1,Ohno Tatsuya12,Shibata Atsushi3

Affiliation:

1. Gunma University Heavy Ion Medical Center , 3-39-22, Showa-machi, Maebashi, Gunma 371-8511 , Japan

2. Gunma University Graduate School of Medicine Department of Radiation Oncology, , 3-39-22, Showa-machi, Maebashi, Gunma 371-8511 , Japan

3. Gunma University Initiative for Advanced Research (GIAR) Signal Transduction Program, , Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511 , Japan

4. Homi Bhabha National Institute Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, , Navi Mumbai 410210

Abstract

AbstractThe strong cell killing effect of high linear energy transfer (LET) carbon ions is dependent on lethal DNA damage. Our recent studies suggest that induction of clusters of double-strand breaks (DSBs) in close proximity is one of the potential mechanisms. However, the relationship between LET, the degree of DSB clustering and the cell killing effect of carbon ions remains unclear. Here, we used high-resolution imaging technology to analyze the volume of γH2AX foci induced by monoenergetic carbon ions with a clinically-relevant range of LET (13–100 keV/μm). We obtained data from 3317 γH2AX foci and used a gaussian function to approximate the probability (p) that 1 Gy-carbon ions induce γH2AX foci of a given volume (vth) or greater per nucleus. Cell killing effects were assessed in clonogenic assays. The cell killing effect showed high concordance with p at vth = 0.7 μm3 across various LET values; the difference between the two was 4.7% ± 2.2%. This relationship was also true for clinical carbon ion beams harboring a mixed LET profile throughout a spread-out Bragg peak width (30–120 mm), with the difference at vth = 0.7 μm3 being 1.6% ± 1.2% when a Monte Carlo simulation-derived dose-averaged LET was used to calculate p. These data indicate that the cell killing effect of carbon ions is predictable by the ability of carbon ions to induce γH2AX foci containing clustered DSBs, which is linked to LET, providing the biological basis for LET modulation in the planning of carbon ion radiotherapy.

Funder

Gunma University

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3