Plasma metabolites and lipids predict insulin sensitivity improvement in obese, nondiabetic individuals after a 2-phase dietary intervention

Author:

Meyer Antonin1,Montastier Emilie23,Hager Jörg1,Saris Wim H M4,Astrup Arne5,Viguerie Nathalie2,Valsesia Armand1

Affiliation:

1. Nestlé Institute of Health Sciences, Lausanne, Switzerland

2. Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Toulouse, France

3. Department of Clinical Biochemistry and Nutrition, Toulouse University Hospital, Toulouse, France

4. Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands

5. Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark

Abstract

ABSTRACT Background Weight loss in obese individuals aims to reduce the risk of type 2 diabetes by improving glycemic control. Yet, significant intersubject variability is observed and the outcomes remain poorly predictable. Objective The aim of the study was to predict whether an individual will show improvements in insulin sensitivity above or below the median population change at 6 mo after a low-calorie-diet (LCD) intervention. Design With the use of plasma lipidomics and metabolomics for 433 subjects from the Diet, Obesity, and Genes (DiOGenes) Study, we attempted to predict good or poor Matsuda index improvements 6 mo after an 8-wk LCD intervention (800 kcal/d). Three independent analysis groups were defined: “training” (n = 119) for model construction, “testing” (n = 162) for model comparison, and “validation” (n = 152) to validate the final model. Results Initial modeling with baseline clinical variables (body mass index, Matsuda index, total lipid concentrations, sex, age) showed limited performance [area under the curve (AUC) on the “testing dataset” = 0.69; 95% CI: 0.61, 0.77]. Significantly better performance was achieved with an omics model based on 27 variables (AUC = 0.77; 95% CI: 0.70, 0.85; P = 0.0297). This model could be greatly simplified while keeping the same performance. The simplified model relied on baseline Matsuda index, proline, and phosphatidylcholine 0-34:1. It successfully replicated on the validation set (AUC = 0.75; 95% CI: 0.67, 0.83) with the following characteristics: specificity = 0.73, sensitivity = 0.68, negative predictive value = 0.60, and positive predictive value = 0.80. Marginally lower performance was obtained when replacing the Matsuda index with homeostasis model assessment of insulin resistance (AUC = 0.72; 95% CI: 0.64, 0.80; P = 0.08). Conclusions Our study proposes a model to predict insulin sensitivity improvements, 6 mo after LCD completion in a large population of overweight or obese nondiabetic subjects. It relies on baseline information from 3 variables, accessible from blood samples. This model may help clinicians assessing the large variability in dietary interventions and predict outcomes before an intervention. This trial was registered at www.clinicaltrials.gov as NCT00390637.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3