Yeast transcriptional device libraries enable precise synthesis of value-added chemicals from methanol

Author:

Zhu Qiaoyun1,Liu Qi1,Yao Chaoying1,Zhang Yuanxing12,Cai Menghao13ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China

2. Shanghai Collaborative Innovation Center for Biomanufacturing , 130 Meilong Road , Shanghai 200237 , China

3. Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China

Abstract

Abstract Natural methylotrophs are attractive methanol utilization hosts, but lack flexible expression tools. In this study, we developed yeast transcriptional device libraries for precise synthesis of value-added chemicals from methanol. We synthesized transcriptional devices by fusing bacterial DNA-binding proteins (DBPs) with yeast transactivation domains, and linking bacterial binding sequences (BSs) with the yeast core promoter. Three DBP–BS pairs showed good activity when working with transactivation domains and the core promoter of PAOX1 in the methylotrophic yeast, Pichia pastoris. Fine-tuning of the tandem BSs, spacers and differentiated input promoters further enabled a constitutive transcriptional device library (cTRDL) composed of 126 transcriptional devices with an expression strength of 16–520% and an inducible TRDL (iTRDL) composed of 162 methanol-inducible transcriptional devices with an expression strength of 30–500%, compared with PAOX1. Selected devices from iTRDL were adapted to the dihydromonacolin L biosynthetic pathway by orthogonal experimental design, reaching 5.5-fold the production from the PAOX1-driven pathway. The full factorial design of the selected devices from the cTRDL was adapted to the downstream pathway of dihydromonacolin L to monacolin J. Monacolin J production from methanol reached 3.0-fold the production from the PAOX1-driven pathway. Our engineered toolsets ensured multilevel pathway control of chemical synthesis in methylotrophic yeasts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Rising-Star Program

Fundamental Research Funds for the Shanghai Science and Technology Innovation Action Plan

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3