Optimized high-throughput screening of non-coding variants identified from genome-wide association studies

Author:

Morova Tunc1ORCID,Ding Yi2ORCID,Huang Chia-Chi F1,Sar Funda1,Schwarz Tommer2ORCID,Giambartolomei Claudia34ORCID,Baca Sylvan C5,Grishin Dennis5,Hach Faraz16ORCID,Gusev Alexander57ORCID,Freedman Matthew L58,Pasaniuc Bogdan24910ORCID,Lack Nathan A161112ORCID

Affiliation:

1. Vancouver Prostate Centre , Vancouver, BC V6H 3Z6, Canada

2. Bioinformatics Interdepartmental Program, University of California , Los Angeles, Los Angeles, CA 90095, USA

3. Central RNA Lab, Istituto Italiano di Tecnologia , Genova 16163, Italy

4. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, CA 90095, USA

5. Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute , Boston, MA 02215, USA

6. Department of Urologic Science, University of British Columbia , Vancouver, BC V5Z 1M9, Canada

7. Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston, MA 02115, USA

8. The Center for Cancer Genome Discovery, Dana Farber Cancer Institute , Boston, MA 02215, USA

9. Department of Human Genetics, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, CA 90095, USA

10. Department of Computational Medicine, University of California , Los Angeles, Los Angeles, CA 90095, USA

11. School of Medicine, Koç University , Istanbul 34450, Turkey

12. Koç University Research Centre for Translational Medicine (KUTTAM), Koç University , Rumelifeneri Yolu, Istanbul 34450, Turkey

Abstract

AbstractThe vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.

Funder

TUBITAK

Turkish Science Academy's Young Scientist Award Program

Koç University School of Medicine

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3