Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis

Author:

Kim Sun Ho1,Bahk Sunghwa1,Nguyen Nhan Thi1,Pham Minh Le Anh1,Kadam Ulhas Sopanrao1,Hong Jong Chan1,Chung Woo Sik1ORCID

Affiliation:

1. Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University , Jinju 52828, Republic of Korea

Abstract

Abstract Since plants are sessile organisms, developmental plasticity in response to environmental stresses is essential for their survival. Upon exposure to drought, lateral root development is suppressed to induce drought tolerance. However, the molecular mechanism by which the development of lateral roots is inhibited by drought is largely unknown. In this study, the auxin signaling repressor IAA15 was identified as a novel substrate of mitogen-activated protein kinases (MPKs) and was shown to suppress lateral root development in response to drought through stabilization by phosphorylation. Both MPK3 and MPK6 directly phosphorylated IAA15 at the Ser-2 and Thr-28 residues. Transgenic plants overexpressing a phospho-mimicking mutant of IAA15 (IAA15DD OX) showed reduced lateral root development due to a higher accumulation of IAA15. In addition, MPK-mediated phosphorylation strongly increased the stability of IAA15 through the inhibition of polyubiquitination. Furthermore, IAA15DD OX plants showed the transcriptional downregulation of two key transcription factors LBD16 and LBD29, responsible for lateral root development. Overall, this study provides the molecular mechanism that explains the significance of the MPK-Aux/IAA module in suppressing lateral root development in response to drought.

Funder

Rural Development Administration

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3