Affiliation:
1. Department of Microbiology, Cornell University , Ithaca, NY 14853 USA
Abstract
Abstract
CRISPR-Cas defense systems have been naturally coopted for guide RNA-directed transposition by Tn7 family bacterial transposons. We find cyanobacterial genomes are rich in Tn7-like elements, including most of the known guide RNA-directed transposons, the type V-K, I-B1, and I-B2 CRISPR-Cas based systems. We discovered and characterized an example of a type I-D CRISPR-Cas system which was naturally coopted for guide RNA-directed transposition. Multiple novel adaptations were found specific to the I-D subtype, including natural inactivation of the Cas10 nuclease. The type I-D CRISPR-Cas transposition system showed flexibility in guide RNA length requirements and could be engineered to function with ribozyme-based self-processing guide RNAs removing the requirement for Cas6 in the heterologous system. The type I-D CRISPR-Cas transposon also has naturally fused transposase proteins that are functional for cut-and-paste transposition. Multiple attributes of the type I-D system offer unique possibilities for future work in gene editing. Our bioinformatic analysis also revealed a broader understanding of the evolution of Tn7-like elements. Extensive swapping of targeting systems was identified among Tn7-like elements in cyanobacteria and multiple examples of convergent evolution, including systems targeting integration into genes required for natural transformation.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献