De novo assembly of human genome at single-cell levels

Author:

Xie Haoling123,Li Wen143,Hu Yuqiong13,Yang Cheng13,Lu Jiansen13,Guo Yuqing13,Wen Lu13ORCID,Tang Fuchou1243ORCID

Affiliation:

1. School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University , Beijing 100871, China

2. Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University , Beijing 100871, China

3. Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation , Beijing 100871, China

4. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China

Abstract

Abstract Genome assembly has been benefited from long-read sequencing technologies with higher accuracy and higher continuity. However, most human genome assembly require large amount of DNAs from homogeneous cell lines without keeping cell heterogeneities, since cell heterogeneity could profoundly affect haplotype assembly results. Herein, using single-cell genome long-read sequencing technology (SMOOTH-seq), we have sequenced K562 and HG002 cells on PacBio HiFi and Oxford Nanopore Technologies (ONT) platforms and conducted de novo genome assembly. For the first time, we have completed the human genome assembly with high continuity (with NG50 of ∼2 Mb using 95 individual K562 cells) at single-cell levels, and explored the impact of different assemblers and sequencing strategies on genome assembly. With sequencing data from 30 diploid individual HG002 cells of relatively high genome coverage (average coverage ∼41.7%) on ONT platform, the NG50 can reach over 1.3 Mb. Furthermore, with the assembled genome from K562 single-cell dataset, more complete and accurate set of insertion events and complex structural variations could be identified. This study opened a new chapter on the practice of single-cell genome de novo assembly.

Funder

Beijing AdvancedInnovation Center for Genomics at Peking University

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3