Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase

Author:

Yi Jia12ORCID,Cai Zhengjun12,Qiu Haipeng12,Lu Feihu12,Luo Zhiteng12,Chen Bingyi12,Gu Qiong2,Xu Jun2,Zhou Huihao12ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

2. Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

Abstract

Abstract Methionyl-tRNA synthetase (MetRS) charges tRNAMet with l-methionine (L-Met) to decode the ATG codon for protein translation, making it indispensable for all cellular lives. Many gram-positive bacteria use a type 1 MetRS (MetRS1), which is considered a promising antimicrobial drug target due to its low sequence identity with human cytosolic MetRS (HcMetRS, which belongs to MetRS2). Here, we report crystal structures of a representative MetRS1 from Staphylococcus aureus (SaMetRS) in its apo and substrate-binding forms. The connecting peptide (CP) domain of SaMetRS differs from HcMetRS in structural organization and dynamic movement. We screened 1049 chemical fragments against SaMetRS preincubated with or without substrate ATP, and ten hits were identified. Four cocrystal structures revealed that the fragments bound to either the L-Met binding site or an auxiliary pocket near the tRNA CCA end binding site of SaMetRS. Interestingly, fragment binding was enhanced by ATP in most cases, suggesting a potential ATP-assisted ligand binding mechanism in MetRS1. Moreover, co-binding with ATP was also observed in our cocrystal structure of SaMetRS with a class of newly reported inhibitors that simultaneously occupied the auxiliary pocket, tRNA site and L-Met site. Our findings will inspire the development of new MetRS1 inhibitors for fighting microbial infections.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Program for Guangdong Introducing Innovative and Entrepreneurial Teams

Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3