QUADRatlas: the RNA G-quadruplex and RG4-binding proteins database

Author:

Bourdon Sébastien123,Herviou Pauline23,Dumas Leïla23,Destefanis Eliana14ORCID,Zen Andrea1,Cammas Anne23,Millevoi Stefania23ORCID,Dassi Erik1ORCID

Affiliation:

1. Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento , 38123  Trento , Italy

2. Cancer Research Centre of Toulouse, INSERM UMR 1037 , 31037  Toulouse , France

3. Université Toulouse III – Paul Sabatier , 31330  Toulouse , France

4. Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento ,  38123  Trento, Italy

Abstract

AbstractRNA G-quadruplexes (RG4s) are non-canonical, disease-associated post-transcriptional regulators of gene expression whose functions are driven by RNA-binding proteins (RBPs). Being able to explore transcriptome-wide RG4 formation and interaction with RBPs is thus paramount to understanding how they are regulated and exploiting them as potential therapeutic targets. Towards this goal, we present QUADRatlas (https://rg4db.cibio.unitn.it), a database of experimentally-derived and computationally predicted RG4s in the human transcriptome, enriched with biological function and disease associations. As RBPs are key to their function, we mined known interactions of RG4s with such proteins, complemented with an extensive RBP binding sites dataset. Users can thus intersect RG4s with their potential regulators and effectors, enabling the formulation of novel hypotheses on RG4 regulation, function and pathogenicity. To support this capability, we provide analysis tools for predicting whether an RBP can bind RG4s, RG4 enrichment in a gene set, and de novo RG4 prediction. Genome-browser and table views allow exploring, filtering, and downloading the data quickly for individual genes and in batch. QUADRatlas is a significant step forward in our ability to understand the biology of RG4s, offering unmatched data content and enabling the integrated analysis of RG4s and their interactions with RBPs.

Funder

MENRT

ANR

FRM

University of Trento

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3