Identifying ribosome heterogeneity using ribosome profiling

Author:

Alkan Ferhat1ORCID,Wilkins Oscar G23ORCID,Hernández-Pérez Santiago1,Ramalho Sofia1ORCID,Silva Joana1ORCID,Ule Jernej234,Faller William J1ORCID

Affiliation:

1. Division of Oncogenomics, The Netherlands Cancer Institute , Amsterdam, The Netherlands

2. The Francis Crick Institute , London, UK

3. UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology , UCL, London, UK

4. UK Dementia Research Institute Centre, King’s College London , London, UK

Abstract

Abstract Recent studies have revealed multiple mechanisms that can lead to heterogeneity in ribosomal composition. This heterogeneity can lead to preferential translation of specific panels of mRNAs, and is defined in large part by the ribosomal protein (RP) content, amongst other things. However, it is currently unknown to what extent ribosomal composition is heterogeneous across tissues, which is compounded by a lack of tools available to study it. Here we present dripARF, a method for detecting differential RP incorporation into the ribosome using Ribosome Profiling (Ribo-seq) data. We combine the ‘waste’ rRNA fragment data generated in Ribo-seq with the known 3D structure of the human ribosome to predict differences in the composition of ribosomes in the material being studied. We have validated this approach using publicly available data, and have revealed a potential role for eS25/RPS25 in development. Our results indicate that ribosome heterogeneity can be detected in Ribo-seq data, providing a new method to study this phenomenon. Furthermore, with dripARF, previously published Ribo-seq data provides a wealth of new information, allowing the identification of RPs of interest in many disease and normal contexts. dripARF is available as part of the ARF R package and can be accessed through https://github.com/fallerlab/ARF.

Funder

KWF

NWO

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3