Detection of unintended on-target effects in CRISPR genome editing by DNA donors carrying diagnostic substitutions

Author:

Lackner Martin1ORCID,Helmbrecht Nelly1,Pääbo Svante12,Riesenberg Stephan1ORCID

Affiliation:

1. Max Planck Institute for Evolutionary Anthropology , Leipzig , Sachsen  04103, Germany

2. Okinawa Institute of Science and Technology , Onna-son , Okinawa  904-0495, Japan

Abstract

AbstractCRISPR nucleases can introduce double-stranded DNA breaks in genomes at positions specified by guide RNAs. When repaired by the cell, this may result in the introduction of insertions and deletions or nucleotide substitutions provided by exogenous DNA donors. However, cellular repair can also result in unintended on-target effects, primarily larger deletions and loss of heterozygosity due to gene conversion. Here we present a strategy that allows easy and reliable detection of unintended on-target effects as well as the generation of control cells that carry wild-type alleles but have demonstratively undergone genome editing at the target site. Our ‘sequence-ascertained favorable editing’ (SAFE) donor approach relies on the use of DNA donor mixtures containing the desired nucleotide substitutions or the wild-type alleles together with combinations of additional ‘diagnostic’ substitutions unlikely to have any effects. Sequencing of the target sites then results in that two different sequences are seen when both chromosomes are edited with ‘SAFE’ donors containing different sets of substitutions, while a single sequence indicates unintended effects such as deletions or gene conversion. We analyzed more than 850 human embryonic stem cell clones edited with ‘SAFE’ donors and detect all copy number changes and almost all clones with gene conversion.

Funder

Max Planck Society

NOMIS Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3