rRNA operon multiplicity as a bacterial genome stability insurance policy

Author:

Fleurier Sebastien1ORCID,Dapa Tanja1ORCID,Tenaillon Olivier2,Condon Ciarán3ORCID,Matic Ivan1ORCID

Affiliation:

1. Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris , 75014 Paris , France

2. INSERM U1137, Université de Paris , 75018 Paris , France

3. Institut de Biologie Physico-Chimique, CNRS UMR8261, Université de Paris , 75005 Paris , France

Abstract

Abstract Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.

Funder

ANR

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference76 articles.

1. Energetics of bacterial growth: balance of anabolic and catabolic reactions;Russell;Microbiol. Rev.,1995

2. Control of rRNA transcription in Escherichia coli;Condon;Microbiol. Rev.,1995

3. Modulation of chemical composition and other parameters of the cell at different exponential growth rates;Dennis;EcoSal Plus,2008

4. Systematic genetic screens reveal the dynamic global functional organization of the bacterial translation machinery;Gagarinova;Cell Rep.,2016

5. Growth-rate-dependent partitioning of RNA polymerases in bacteria;Klumpp;Proc. Natl. Acad. Sci. U.S.A.,2008

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3