Domain function and predicted structure of three heterodimeric endonuclease subunits of RNA editing catalytic complexes in Trypanosoma brucei

Author:

Carnes Jason1ORCID,McDermott Suzanne M12ORCID,Lewis Isaac1,Tracy Maxwell1,Stuart Kenneth12ORCID

Affiliation:

1. Seattle Children's Research Institute ,  Seattle , WA, USA

2. Department of Pediatrics, University of Washington School of Medicine , Seattle , WA, USA

Abstract

Abstract Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3