Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer–promoter interactions

Author:

Wang Kaiyuan1,Escobar Mario2,Li Jing1,Mahata Barun1,Goell Jacob1,Shah Spencer1,Cluck Madeleine2,Hilton Isaac B12ORCID

Affiliation:

1. Department of Bioengineering, Rice University , Houston, TX 77005, USA

2. Department of BioSciences, Rice University , Houston, TX 77005, USA

Abstract

Abstract Nuclease-inactivated CRISPR/Cas-based (dCas-based) systems have emerged as powerful technologies to synthetically reshape the human epigenome and gene expression. Despite the increasing adoption of these platforms, their relative potencies and mechanistic differences are incompletely characterized, particularly at human enhancer–promoter pairs. Here, we systematically compared the most widely adopted dCas9-based transcriptional activators, as well as an activator consisting of dCas9 fused to the catalytic core of the human CBP protein, at human enhancer–promoter pairs. We find that these platforms display variable relative expression levels in different human cell types and that their transactivation efficacies vary based upon the effector domain, effector recruitment architecture, targeted locus and cell type. We also show that each dCas9-based activator can induce the production of enhancer RNAs (eRNAs) and that this eRNA induction is positively correlated with downstream mRNA expression from a cognate promoter. Additionally, we use dCas9-based activators to demonstrate that an intrinsic transcriptional and epigenetic reciprocity can exist between human enhancers and promoters and that enhancer-mediated tracking and engagement of a downstream promoter can be synthetically driven by targeting dCas9-based transcriptional activators to an enhancer. Collectively, our study provides new insights into the enhancer-mediated control of human gene expression and the use of dCas9-based activators.

Funder

Cancer Prevention and Research Institute of Texas

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3