The intrinsically disordered TSSC4 protein acts as a helicase inhibitor, placeholder and multi-interaction coordinator during snRNP assembly and recycling

Author:

Bergfort Alexandra1,Hilal Tarek12,Kuropka Benno34,Ilik İbrahim Avşar5,Weber Gert6ORCID,Aktaş Tuğçe5,Freund Christian3,Wahl Markus C16ORCID

Affiliation:

1. Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany

2. Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, Fabeckstr. 36a, 14195 Berlin, Germany

3. Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Thielallee 63, D-14195, Berlin, Germany

4. Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Thielallee 63, D-14195, Berlin, Germany

5. Max Planck Institute for Molecular Genetics, Ihnestr. 63, D-14195 Berlin, Germany

6. Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany

Abstract

Abstract Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4’s intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.

Funder

Deutsche Forschungsgemeinschaft

Berlin University Alliance

Max Planck Society

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference87 articles.

1. The spliceosome: design principles of a dynamic RNP machine;Wahl;Cell,2009

2. Spliceosome structure and function;Will;Cold Spring Harb. Perspect. Biol.,2011

3. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes;Kastner;Cold Spring Harb. Perspect. Biol.,2019

4. RNA splicing by the spliceosome;Wilkinson;Annu. Rev. Biochem.,2020

5. Splicing double: insights from the second spliceosome;Patel;Nat. Rev. Mol. Cell Biol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3