Affiliation:
1. Advanced Research Center for Computational Simulation, Faculty of Science, Chiang Mai University , Chiang Mai, Thailand
2. Genome Institute of Singapore, A*STAR , Singapore, Singapore
Abstract
Abstract
Extensive in vitro cancer drug screening datasets have enabled scientists to identify biomarkers and develop machine learning models for predicting drug sensitivity. While most advancements have focused on omics profiles, cancer drug sensitivity scores precalculated by the original sources are often used as-is, without consideration for variabilities between studies. It is well-known that significant inconsistencies exist between the drug sensitivity scores across datasets due to differences in experimental setups and preprocessing methods used to obtain the sensitivity scores. As a result, many studies opt to focus only on a single dataset, leading to underutilization of available data and a limited interpretation of cancer pharmacogenomics analysis. To overcome these caveats, we have developed CREAMMIST (https://creammist.mtms.dev), an integrative database that enables users to obtain an integrative dose-response curve, to capture uncertainty (or high certainty when multiple datasets well align) across five widely used cancer cell-line drug–response datasets. We utilized the Bayesian framework to systematically integrate all available dose-response values across datasets (>14 millions dose-response data points). CREAMMIST provides easy-to-use statistics derived from the integrative dose-response curves for various downstream analyses such as identifying biomarkers, selecting drug concentrations for experiments, and training robust machine learning models.
Funder
Chiang Mai University
A*STAR
National Medical Research Council
Genome Institute of Singapore
Publisher
Oxford University Press (OUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献