Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome

Author:

Nakata Yoshihiro12,Ode Hirotaka1ORCID,Kubota Mai1,Kasahara Takaaki13,Matsuoka Kazuhiro1,Sugimoto Atsuko1,Imahashi Mayumi1,Yokomaku Yoshiyuki1,Iwatani Yasumasa12ORCID

Affiliation:

1. Clinical Research Center, National Hospital Organization Nagoya Medical Center , Nagoya, Aichi 460-0001, Japan

2. Department of AIDS Research, Division of Basic Medicine, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550, Japan

3. Department of Respiratory Medicine, Division of Internal Medicine, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550, Japan

Abstract

Abstract The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Japan Science and Technology Agency

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3