How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner

Author:

Vollmers John1ORCID,Wiegand Sandra1,Lenk Florian1,Kaster Anne-Kristin1

Affiliation:

1. Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT)   76344 , Eggenstein-Leopoldshafen , Germany

Abstract

AbstractAs of today, the majority of environmental microorganisms remain uncultured and is therefore referred to as ‘microbial dark matter’ (MDM). Hence, genomic insights into these organisms are limited to cultivation-independent approaches such as single-cell- and metagenomics. However, without access to cultured representatives for verifying correct taxon-assignments, MDM genomes may cause potentially misleading conclusions based on misclassified or contaminant contigs, thereby obfuscating our view on the uncultured microbial majority. Moreover, gradual database contaminations by past genome submissions can cause error propagations which affect present as well as future comparative genome analyses. Consequently, strict contamination detection and filtering need to be applied, especially in the case of uncultured MDM genomes. Current genome reporting standards, however, emphasize completeness over purity and the de facto gold standard genome assessment tool, checkM, discriminates against uncultured taxa and fragmented genomes. To tackle these issues, we present a novel contig classification, screening, and filtering workflow and corresponding open-source python implementation called MDMcleaner, which was tested and compared to other tools on mock and real datasets. MDMcleaner revealed substantial contaminations overlooked by current screening approaches and sensitively detects misattributed contigs in both novel genomes and the underlying reference databases, thereby greatly improving our view on ‘microbial dark matter’.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3