Active endogenous retroviral elements in human pluripotent stem cells play a role in regulating host gene expression

Author:

Zhang Tianzhe1,Zheng Ran1,Li Mao1,Yan Chenchao1,Lan Xianchun1,Tong Bei2,Lu Pei1,Jiang Wei134ORCID

Affiliation:

1. Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China

2. Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

3. Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China

4. Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China

Abstract

Abstract Human endogenous retroviruses, also called LTR elements, can be bound by transcription factors and marked by different histone modifications in different biological contexts. Recently, individual LTR or certain subclasses of LTRs such as LTR7/HERVH and LTR5_Hs/HERVK families have been identified as cis-regulatory elements. However, there are still many LTR elements with unknown functions. Here, we dissected the landscape of histone modifications and regulatory map of LTRs by integrating 98 ChIP-seq data in human embryonic stem cells (ESCs), and annotated the active LTRs enriching enhancer/promoter-related histone marks. Notably, we found that MER57E3 functionally acted as proximal regulatory element to activate respective ZNF gene. Additionally, HERVK transcript could mainly function in nucleus to activate the adjacent genes. Since LTR5_Hs/LTR5 was bound by many early embryo-specific transcription factors, we further investigated the expression dynamics in different pluripotent states. LTR5_Hs/LTR5/HERVK exhibited higher expression level in naïve ESCs and extended pluripotent stem cells (EPSCs). Functionally, the LTR5_Hs/LTR5 with high activity could serve as a distal enhancer to regulate the host genes. Ultimately, our study not only provides a comprehensive regulatory map of LTRs in human ESCs, but also explores the regulatory models of MER57E3 and LTR5_Hs/LTR5 in host genome.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Department of Hebei Province, China

Central Universities in China

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3