Rotavirus RNA chaperone mediates global transcriptome-wide increase in RNA backbone flexibility

Author:

Coria Aaztli12,Wienecke Anastacia23,Knight Michael L4,Desirò Daniel4,Laederach Alain23ORCID,Borodavka Alexander4ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, NC 27599, USA

2. Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599, USA

3. Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599, USA

4. Department of Biochemistry, University of Cambridge , Cambridge, UK

Abstract

Abstract Due to genome segmentation, rotaviruses must co-package eleven distinct genomic RNAs. The packaging is mediated by virus-encoded RNA chaperones, such as the rotavirus NSP2 protein. While the activities of distinct RNA chaperones are well studied on smaller RNAs, little is known about their global effect on the entire viral transcriptome. Here, we used Selective 2′-hydroxyl Acylation Analyzed by Primer Extension and Mutational Profiling (SHAPE-MaP) to examine the secondary structure of the rotavirus transcriptome in the presence of increasing amounts of NSP2. SHAPE-MaP data reveals that despite the well-documented helix-unwinding activity of NSP2 in vitro, its incubation with cognate rotavirus transcripts does not induce a significant change in the SHAPE reactivities. However, a quantitative analysis of mutation rates measured by mutational profiling reveals a global 5-fold rate increase in the presence of NSP2. We demonstrate that the normalization procedure used in deriving SHAPE reactivities from mutation rates can mask an important global effect of an RNA chaperone. Analysis of the mutation rates reveals a larger effect on stems rather than loops. Together, these data provide the first experimentally derived secondary structure model of the rotavirus transcriptome and reveal that NSP2 acts by globally increasing RNA backbone flexibility in a concentration-dependent manner.

Funder

Wellcome Trust

National Institutes of Health

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3