Affiliation:
1. Department of Biosciences and Nutrition, Karolinska Institutet , 14183 Huddinge , Sweden
Abstract
AbstractThe Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Funder
Swedish Research Council
Swedish Cancer Society
Novo Nordisk Foundation
Centre for Innovative Medicine at Karolinska Institutet
European Foundation for the Study of Diabetes
Lilly Young Investigator Award
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献