scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods

Author:

Dai Chichi1,Jiang Yi23,Yin Chenglin23,Su Ran1ORCID,Zeng Xiangxiang4ORCID,Zou Quan5ORCID,Nakai Kenta6ORCID,Wei Leyi23ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin, China

2. School of Software, Shandong University, Jinan, China

3. Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China

4. College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

5. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China

6. Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan

Abstract

Abstract With the advent of single-cell RNA sequencing (scRNA-seq), one major challenging is the so-called ‘dropout’ events that distort gene expression and remarkably influence downstream analysis in single-cell transcriptome. To address this issue, much effort has been done and several scRNA-seq imputation methods were developed with two categories: model-based and deep learning-based. However, comprehensively and systematically comparing existing methods are still lacking. In this work, we use six simulated and two real scRNA-seq datasets to comprehensively evaluate and compare a total of 12 available imputation methods from the following four aspects: (i) gene expression recovering, (ii) cell clustering, (iii) gene differential expression, and (iv) cellular trajectory reconstruction. We demonstrate that deep learning-based approaches generally exhibit better overall performance than model-based approaches under major benchmarking comparison, indicating the power of deep learning for imputation. Importantly, we built scIMC (single-cell Imputation Methods Comparison platform), the first online platform that integrates all available state-of-the-art imputation methods for benchmarking comparison and visualization analysis, which is expected to be a convenient and useful tool for researchers of interest. It is now freely accessible via https://server.wei-group.net/scIMC/.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Hunan Provincial Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3