Affiliation:
1. Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
3. University of Chinese Academy of Sciences , Beijing 100049, China
Abstract
Abstract
Advances in genetic manipulation and genome engineering techniques have enabled on-demand targeted deletion, insertion, and substitution of DNA sequences. One important step in these techniques is the design of editing sequences (e.g. primers, homologous arms) to precisely target and manipulate DNA sequences of interest. Experimental biologists can employ multiple tools in a stepwise manner to assist editing sequence design (ESD), but this requires various software involving non-standardized data exchange and input/output formats. Moreover, necessary quality control steps might be overlooked by non-expert users. This approach is low-throughput and can be error-prone, which illustrates the need for an automated ESD system. In this paper, we introduce AutoESD (https://autoesd.biodesign.ac.cn/), which designs editing sequences for all steps of genetic manipulation of many common homologous-recombination techniques based on screening-markers. Notably, multiple types of manipulations for different targets (CDS or intergenic region) can be processed in one submission. Moreover, AutoESD has an entirely cloud-based serverless architecture, offering high reliability, robustness and scalability which is capable of parallelly processing hundreds of design tasks each having thousands of targets in minutes. To our knowledge, AutoESD is the first cloud platform enabling precise, automated, and high-throughput ESD across species, at any genomic locus for all manipulation types.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Tianjin Synthetic Biotechnology Innovation Capacity Improvement
Youth Innovation Promotion Association
China Postdoctoral Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献