Option Return Predictability with Machine Learning and Big Data

Author:

Bali Turan G1,Beckmeyer Heiner2,Mörke Mathis3,Weigert Florian4

Affiliation:

1. Georgetown University , USA

2. University of Münster , Germany

3. University of St.Gallen , Switzerland

4. University of Neuchâtel , Switzerland

Abstract

Abstract Drawing upon more than 12 million observations over the period from 1996 to 2020, we find that allowing for nonlinearities significantly increases the out-of-sample performance of option and stock characteristics in predicting future option returns. The nonlinear machine learning models generate statistically and economically sizable profits in the long-short portfolios of equity options even after accounting for transaction costs. Although option-based characteristics are the most important standalone predictors, stock-based measures offer substantial incremental predictive power when considered alongside option-based characteristics. Finally, we provide compelling evidence that option return predictability is driven by informational frictions and option mispricing. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference117 articles.

1. Risks and portfolio decisions involving hedge funds;Agarwal,;Review of Financial Studies,2004

2. Illiquidity and stock returns: Cross-section and time-series effects;Amihud,;Journal of Financial Markets,2002

3. The joint cross section of stocks and options;An,;Journal of Finance,2014

4. Tabnet: Attentive interpretable tabular learning;Arik,;Proceedings of the AAAI Conference on Artificial Intelligence,2021

5. Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns;Atilgan,;Journal of Financial Economics,2020

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3