Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein

Author:

Ahammad Foysal123,Alam Rahat23,Mahmud Rasel4,Akhter Shahina25,Talukder Enamul Kabir23,Tonmoy Al Mahmud26,Fahim Salman27,Al-Ghamdi Khalid1,Samad Abdus23,Qadri Ishtiaq1

Affiliation:

1. Department of Biological Science, Faculty of science, King Abdul-Aziz University, Jeddah-21589, Saudi Arabia

2. Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore-7408, Bangladesh

3. Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University and Science and Technology University, Jashore-7408, Bangladesh

4. Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh

5. Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC) Block # D, Floor # 11, Foy’s Lake, Khulshi, Chittagong 4202, Bangladesh

6. Department of Zoology, Institute of Dhaka College, University of Dhaka, Dhaka-1000, Bangladesh

7. Bachelor of medicine and Bachelor of Surgery (MBBS), CARe Medical College, 2, 1-A Iqbal Road, Dhaka-1207, Bangladesh

Abstract

Abstract Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein–ligand complex structure MD simulations approach has also been performed to the protein–ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3