Drug sensitivity prediction from cell line-based pharmacogenomics data: guidelines for developing machine learning models

Author:

Sharifi-Noghabi Hossein123ORCID,Jahangiri-Tazehkand Soheil435,Smirnov Petr435,Hon Casey35,Mammoliti Anthony435,Nair Sisira Kadambat3,Mer Arvind Singh435,Ester Martin12,Haibe-Kains Benjamin4365ORCID

Affiliation:

1. School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada

2. Vancouver Prostate Center, Vancouver, British Columbia, Canada

3. Princess Margaret Cancer Centre, Toronto, Ontario, Canada

4. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

5. University of Toronto, Toronto, Ontario, Canada

6. Ontario Institute for Cancer Research, Toronto, Ontario, Canada

Abstract

Abstract The goal of precision oncology is to tailor treatment for patients individually using the genomic profile of their tumors. Pharmacogenomics datasets such as cancer cell lines are among the most valuable resources for drug sensitivity prediction, a crucial task of precision oncology. Machine learning methods have been employed to predict drug sensitivity based on the multiple omics data available for large panels of cancer cell lines. However, there are no comprehensive guidelines on how to properly train and validate such machine learning models for drug sensitivity prediction. In this paper, we introduce a set of guidelines for different aspects of training gene expression-based predictors using cell line datasets. These guidelines provide extensive analysis of the generalization of drug sensitivity predictors and challenge many current practices in the community including the choice of training dataset and measure of drug sensitivity. The application of these guidelines in future studies will enable the development of more robust preclinical biomarkers.

Funder

Natural Sciences and Engineering Research Council via a Discovery

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3