Inference of dynamic spatial GRN models with multi-GPU evolutionary computation

Author:

Mousavi Reza1,Konuru Sri Harsha1,Lobo Daniel1

Affiliation:

1. Department of Biological Sciences at the University of Maryland, Baltimore, MD 21250, USA

Abstract

Abstract Reverse engineering mechanistic gene regulatory network (GRN) models with a specific dynamic spatial behavior is an inverse problem without analytical solutions in general. Instead, heuristic machine learning algorithms have been proposed to infer the structure and parameters of a system of equations able to recapitulate a given gene expression pattern. However, these algorithms are computationally intensive as they need to simulate millions of candidate models, which limits their applicability and requires high computational resources. Graphics processing unit (GPU) computing is an affordable alternative for accelerating large-scale scientific computation, yet no method is currently available to exploit GPU technology for the reverse engineering of mechanistic GRNs from spatial phenotypes. Here we present an efficient methodology to parallelize evolutionary algorithms using GPU computing for the inference of mechanistic GRNs that can develop a given gene expression pattern in a multicellular tissue area or cell culture. The proposed approach is based on multi-CPU threads running the lightweight crossover, mutation and selection operators and launching GPU kernels asynchronously. Kernels can run in parallel in a single or multiple GPUs and each kernel simulates and scores the error of a model using the thread parallelism of the GPU. We tested this methodology for the inference of spatiotemporal mechanistic gene regulatory networks (GRNs)—including topology and parameters—that can develop a given 2D gene expression pattern. The results show a 700-fold speedup with respect to a single CPU implementation. This approach can streamline the extraction of knowledge from biological and medical datasets and accelerate the automatic design of GRNs for synthetic biology applications.

Funder

National Science Foundation

SCREMS program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3