Bridging-BPs: a novel approach to predict potential drug–target interactions based on a bridging heterogeneous graph and BPs2vec

Author:

Li Guodong1,Zhang Ping2ORCID,Sun Weicheng2,Ren Chengjuan3,Wang Lei4

Affiliation:

1. College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China

2. College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China

3. School of Computer Software Convergence Engineering, Kunsan National University, Kunsan, 54150, Korea

4. Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China

Abstract

Abstract Predicting drug–target interactions (DTIs) is a convenient strategy for drug discovery. Although various computational methods have been put forward in recent years, DTIs prediction is still a challenging task. In this paper, based on indirect prior information (we term them as mediators), we proposed a new model, called Bridging-BPs (bridging paths), for DTIs prediction. Specifically, we regarded linkage process between mediators and DTs (drugs and proteins) as ‘bridging’ and source (drug)-mediators-destination (protein) as bridging paths. By integrating various bridging paths, we constructed a bridging heterogeneous graph for DTIs. After that, an improved graph-embedding algorithm—BPs2vec—was designed to capture deep topological features underlying the bridging graph, thereby obtaining the low-dimensional node vector representations. Then, the vector representations were fed into a Random Forest classifier to train and score the probability, outputting the final classification results for potential DTIs. Under 5-fold cross validation, our method obtained AUPR of 88.97% and AUC of 88.63%, suggesting that Bridging-BPs could effectively mine the link relationships hidden in indirect prior information and it significantly improved the accuracy and robustness of DTIs prediction without direct prior information. Finally, we confirmed the practical prediction ability of Bridging-BPs by case studies.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3