A similarity-based deep learning approach for determining the frequencies of drug side effects

Author:

Zhao Haochen1,Wang Shaokai2,Zheng Kai1,Zhao Qichang1,Zhu Feng3,Wang Jianxin1

Affiliation:

1. School of Computer Science and Engineering, Central South University, China

2. School of David R. Cheriton School of Computer Science, University of Waterloo, Canada

3. College of Pharmaceutical Sciences in Zhejiang University, China

Abstract

Abstract The side effects of drugs present growing concern attention in the healthcare system. Accurately identifying the side effects of drugs is very important for drug development and risk assessment. Some computational models have been developed to predict the potential side effects of drugs and provided satisfactory performance. However, most existing methods can only predict whether side effects will occur and cannot determine the frequency of side effects. Although a few existing methods can predict the frequency of drug side effects, they strongly depend on the known drug-side effect relationships. Therefore, they cannot be applied to new drugs without known side effect frequency information. In this paper, we develop a novel similarity-based deep learning method, named SDPred, for determining the frequencies of drug side effects. Compared with the existing state-of-the-art models, SDPred integrates rich features and can be applied to predict the side effect frequencies of new drugs without any known drug-side effect association or frequency information. To our knowledge, this is the first work that can predict the side effect frequencies of new drugs in the population. The comparison results indicate that SDPred is much superior to all previously reported models. In addition, some case studies also demonstrate the effectiveness of our proposed method in practical applications. The SDPred software and data are freely available at https://github.com/zhc940702/SDPred, https://zenodo.org/record/5112573 and https://hub.docker.com/r/zhc940702/sdpred.

Funder

Scottish Funding Council

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3