Prediction and collection of protein–metabolite interactions

Author:

Zhao Tianyi12ORCID,Liu Jinxin2,Zeng Xi3,Wang Wei3,Li Sheng4,Zang Tianyi2,Peng Jiajie3,Yang Yang1ORCID

Affiliation:

1. The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Inner Mongolia, 010010, China

2. Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China

3. School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, China

4. Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China

Abstract

Abstract Interactions between proteins and small molecule metabolites play vital roles in regulating protein functions and controlling various cellular processes. The activities of metabolic enzymes, transcription factors, transporters and membrane receptors can all be mediated through protein–metabolite interactions (PMIs). Compared with the rich knowledge of protein–protein interactions, little is known about PMIs. To the best of our knowledge, no existing database has been developed for collecting PMIs. The recent rapid development of large-scale mass spectrometry analysis of biomolecules has led to the discovery of large amounts of PMIs. Therefore, we developed the PMI-DB to provide a comprehensive and accurate resource of PMIs. A total of 49 785 entries were manually collected in the PMI-DB, corresponding to 23 small molecule metabolites, 9631 proteins and 4 species. Unlike other databases that only provide positive samples, the PMI-DB provides non-interaction between proteins and metabolites, which not only reduces the experimental cost for biological experimenters but also facilitates the construction of more accurate algorithms for researchers using machine learning. To show the convenience of the PMI-DB, we developed a deep learning-based method to predict PMIs in the PMI-DB and compared it with several methods. The experimental results show that the area under the curve and area under the precision-recall curve of our method are 0.88 and 0.95, respectively. Overall, the PMI-DB provides a user-friendly interface for browsing the biological functions of metabolites/proteins of interest, and experimental techniques for identifying PMIs in different species, which provides important support for furthering the understanding of cellular processes. The PMI-DB is freely accessible at http://easybioai.com/PMIDB.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3