Affiliation:
1. Department of Computer Science, University of Tsukuba, Tsukuba, Japan, 3058577
2. School of Software, Shandong University, Jinan, China
Abstract
Abstract
Motivation: Peptides have recently emerged as promising therapeutic agents against various diseases. For both research and safety regulation purposes, it is of high importance to develop computational methods to accurately predict the potential toxicity of peptides within the vast number of candidate peptides. Results: In this study, we proposed ATSE, a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural networks and attention mechanism. More specifically, it consists of four modules: (i) a sequence processing module for converting peptide sequences to molecular graphs and evolutionary profiles, (ii) a feature extraction module designed to learn discriminative features from graph structural information and evolutionary information, (iii) an attention module employed to optimize the features and (iv) an output module determining a peptide as toxic or non-toxic, using optimized features from the attention module. Conclusion: Comparative studies demonstrate that the proposed ATSE significantly outperforms all other competing methods. We found that structural information is complementary to the evolutionary information, effectively improving the predictive performance. Importantly, the data-driven features learned by ATSE can be interpreted and visualized, providing additional information for further analysis. Moreover, we present a user-friendly online computational platform that implements the proposed ATSE, which is now available at http://server.malab.cn/ATSE. We expect that it can be a powerful and useful tool for researchers of interest.
Funder
Natural Science Foundation of China
Japan Society for the Promotion of Science
New Energy and Industrial Technology Development Organization
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献