MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction

Author:

He Wenying1,Tang Jijun1,Zou Quan2,Guo Fei3

Affiliation:

1. Tianjin University, China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China

3. College of Intelligence and Computing, Tianjin University, Tianjin, China

Abstract

Abstract Lots of biological processes are controlled by gene regulatory networks (GRNs), such as growth and differentiation of cells, occurrence and development of the diseases. Therefore, it is important to persistently concentrate on the research of GRN. The determination of the gene–gene relationships from gene expression data is a complex issue. Since it is difficult to efficiently obtain the regularity behind the gene-gene relationship by only relying on biochemical experimental methods, thus various computational methods have been used to construct GRNs, and some achievements have been made. In this paper, we propose a novel method MMFGRN (for “Multi-source Multi-model Fusion for Gene Regulatory Network reconstruction”) to reconstruct the GRN. In order to make full use of the limited datasets and explore the potential regulatory relationships contained in different data types, we construct the MMFGRN model from three perspectives: single time series data model, single steady-data model and time series and steady-data joint model. And, we utilize the weighted fusion strategy to get the final global regulatory link ranking. Finally, MMFGRN model yields the best performance on the DREAM4 InSilico_Size10 data, outperforming other popular inference algorithms, with an overall area under receiver operating characteristic score of 0.909 and area under precision-recall (AUPR) curves score of 0.770 on the 10-gene network. Additionally, as the network scale increases, our method also has certain advantages with an overall AUPR score of 0.335 on the DREAM4 InSilico_Size100 data. These results demonstrate the good robustness of MMFGRN on different scales of networks. At the same time, the integration strategy proposed in this paper provides a new idea for the reconstruction of the biological network model without prior knowledge, which can help researchers to decipher the elusive mechanism of life.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference46 articles.

1. Challenges for modeling global gene regulatory networks during development: insights from drosophila;Wilczynski;Dev Biol,2010

2. Gene regulatory network inference: connecting plant biology and mathematical Modeling;van den Broeck;Front Genet,2020

3. Gene regulatory network inference resources: a practical overview;Biochim Biophys Acta Gene Regul Mech,2020

4. Next generation sequencing technology: advances and applications;Buermans;Biochim Biophys Acta,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3