Affiliation:
1. Tianjin University, China
2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
3. College of Intelligence and Computing, Tianjin University, Tianjin, China
Abstract
Abstract
Lots of biological processes are controlled by gene regulatory networks (GRNs), such as growth and differentiation of cells, occurrence and development of the diseases. Therefore, it is important to persistently concentrate on the research of GRN. The determination of the gene–gene relationships from gene expression data is a complex issue. Since it is difficult to efficiently obtain the regularity behind the gene-gene relationship by only relying on biochemical experimental methods, thus various computational methods have been used to construct GRNs, and some achievements have been made. In this paper, we propose a novel method MMFGRN (for “Multi-source Multi-model Fusion for Gene Regulatory Network reconstruction”) to reconstruct the GRN. In order to make full use of the limited datasets and explore the potential regulatory relationships contained in different data types, we construct the MMFGRN model from three perspectives: single time series data model, single steady-data model and time series and steady-data joint model. And, we utilize the weighted fusion strategy to get the final global regulatory link ranking. Finally, MMFGRN model yields the best performance on the DREAM4 InSilico_Size10 data, outperforming other popular inference algorithms, with an overall area under receiver operating characteristic score of 0.909 and area under precision-recall (AUPR) curves score of 0.770 on the 10-gene network. Additionally, as the network scale increases, our method also has certain advantages with an overall AUPR score of 0.335 on the DREAM4 InSilico_Size100 data. These results demonstrate the good robustness of MMFGRN on different scales of networks. At the same time, the integration strategy proposed in this paper provides a new idea for the reconstruction of the biological network model without prior knowledge, which can help researchers to decipher the elusive mechanism of life.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献