FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction

Author:

Yuan Weining1,Chen Guanxing1,Chen Calvin Yu-Chian1234

Affiliation:

1. Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China

2. Guangdong Provincial Key Laboratory of Fire Science and Technology, Guangzhou, 510006, China

3. Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan

4. Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan

Abstract

Abstract The prediction of drug-target affinity (DTA) plays an increasingly important role in drug discovery. Nowadays, lots of prediction methods focus on feature encoding of drugs and proteins, but ignore the importance of feature aggregation. However, the increasingly complex encoder networks lead to the loss of implicit information and excessive model size. To this end, we propose a deep-learning-based approach namely FusionDTA. For the loss of implicit information, a novel muti-head linear attention mechanism was utilized to replace the rough pooling method. This allows FusionDTA aggregates global information based on attention weights, instead of selecting the largest one as max-pooling does. To solve the redundancy issue of parameters, we applied knowledge distillation in FusionDTA by transfering learnable information from teacher model to student. Results show that FusionDTA performs better than existing models for the test domain on all evaluation metrics. We obtained concordance index (CI) index of 0.913 and 0.906 in Davis and KIBA dataset respectively, compared with 0.893 and 0.891 of previous state-of-art model. Under the cold-start constrain, our model proved to be more robust and more effective with unseen inputs than baseline methods. In addition, the knowledge distillation did save half of the parameters of the model, with only 0.006 reduction in CI index. Even FusionDTA with half the parameters could easily exceed the baseline on all metrics. In general, our model has superior performance and improves the effect of drug–target interaction (DTI) prediction. The visualization of DTI can effectively help predict the binding region of proteins during structure-based drug design.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Fund

Science, Technology and Innovation Commission of Shenzhen Municipality

China Medical University Hospital

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3