Affiliation:
1. Department of Computer Science at City University of Hong Kong
2. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
Abstract
Abstract
Next-generation sequencing expands the known phage genomes rapidly. Unlike culture-based methods, the hosts of phages discovered from next-generation sequencing data remain uncharacterized. The high diversity of the phage genomes makes the host assignment task challenging. To solve the issue, we proposed a phage host prediction tool—DeepHost. To encode the phage genomes into matrices, we design a genome encoding method that applied various spaced $k$-mer pairs to tolerate sequence variations, including insertion, deletions, and mutations. DeepHost applies a convolutional neural network to predict host taxonomies. DeepHost achieves the prediction accuracy of 96.05% at the genus level (72 taxonomies) and 90.78% at the species level (118 taxonomies), which outperforms the existing phage host prediction tools by 10.16–30.48% and achieves comparable results to BLAST. For the genomes without hits in BLAST, DeepHost obtains the accuracy of 38.00% at the genus level and 26.47% at the species level, making it suitable for genomes of less homologous sequences with the existing datasets. DeepHost is alignment-free, and it is faster than BLAST, especially for large datasets. DeepHost is available at https://github.com/deepomicslab/DeepHost.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献