Identification of active molecules against Mycobacterium tuberculosis through machine learning

Author:

Ye Qing1ORCID,Chai Xin1,Jiang Dejun1,Yang Liu1,Shen Chao1,Zhang Xujun1,Li Dan2,Cao Dongsheng3ORCID,Hou Tingjun1ORCID

Affiliation:

1. College of Pharmaceutical Sciences at Zhejiang University, China

2. College of Pharmaceutical Sciences, Zhejiang University, China

3. Xiangya School of Pharmaceutical Sciences at Central South University, China

Abstract

Abstract Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and it has been one of the top 10 causes of death globally. Drug-resistant tuberculosis (XDR-TB), extensively resistant to the commonly used first-line drugs, has emerged as a major challenge to TB treatment. Hence, it is quite necessary to discover novel drug candidates for TB treatment. In this study, based on different types of molecular representations, four machine learning (ML) algorithms, including support vector machine, random forest (RF), extreme gradient boosting (XGBoost) and deep neural networks (DNN), were used to develop classification models to distinguish Mtb inhibitors from noninhibitors. The results demonstrate that the XGBoost model exhibits the best prediction performance. Then, two consensus strategies were employed to integrate the predictions from multiple models. The evaluation results illustrate that the consensus model by stacking the RF, XGBoost and DNN predictions offers the best predictions with area under the receiver operating characteristic curve of 0.842 and 0.942 for the 10-fold cross-validated training set and external test set, respectively. Besides, the association between the important descriptors and the bioactivities of molecules was interpreted by using the Shapley additive explanations method. Finally, an online webserver called ChemTB (http://cadd.zju.edu.cn/chemtb/) was developed, and it offers a freely available computational tool to detect potential Mtb inhibitors.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Key R&D Program of Zhejiang Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3