Why can deep convolutional neural networks improve protein fold recognition? A visual explanation by interpretation

Author:

Liu Yan1,Zhu Yi-Heng2,Song Xiaoning3,Song Jiangning4ORCID,Yu Dong-Jun1ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China

2. Department of Computer Science, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, China

3. Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia

4. Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia

Abstract

Abstract As an essential task in protein structure and function prediction, protein fold recognition has attracted increasing attention. The majority of the existing machine learning-based protein fold recognition approaches strongly rely on handcrafted features, which depict the characteristics of different protein folds; however, effective feature extraction methods still represent the bottleneck for further performance improvement of protein fold recognition. As a powerful feature extractor, deep convolutional neural network (DCNN) can automatically extract discriminative features for fold recognition without human intervention, which has demonstrated an impressive performance on protein fold recognition. Despite the encouraging progress, DCNN often acts as a black box, and as such, it is challenging for users to understand what really happens in DCNN and why it works well for protein fold recognition. In this study, we explore the intrinsic mechanism of DCNN and explain why it works for protein fold recognition using a visual explanation technique. More specifically, we first trained a VGGNet-based DCNN model, termed VGGNet-FE, which can extract fold-specific features from the predicted protein residue–residue contact map for protein fold recognition. Subsequently, based on the trained VGGNet-FE, we implemented a new contact-assisted predictor, termed VGGfold, for protein fold recognition; we then visualized what features were extracted by each of the convolutional layers in VGGNet-FE using a deconvolution technique. Furthermore, we visualized the high-level semantic information, termed fold-discriminative region, of a predicted contact map from the localization map obtained from the last convolutional layer of VGGNet-FE. It is visually confirmed that VGGNet-FE could effectively extract distinct fold-discriminative regions for different types of protein folds, thereby accounting for the improved performance of VGGfold for protein fold recognition. In summary, this study is of great significance for both understanding the working principle of DCNNs in protein fold recognition and exploring the relationship between the predicted protein contact map and protein tertiary structure. This proposed visualization method is flexible and applicable to address other DCNN-based bioinformatics and computational biology questions. The online web server of VGGfold is freely available at http://csbio.njust.edu.cn/bioinf/vggfold/.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu

Fundamental Research Funds for the Central Universities

National Health and Medical Research Council of Australia

Australian Research Council

National Institute of Allergy and Infectious Diseases

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3