AMDBNorm: an approach based on distribution adjustment to eliminate batch effects of gene expression data

Author:

Zhang Xu1,Ye Zhiqiang2,Chen Jing3,Qiao Feng4

Affiliation:

1. School of Mathematics and Statistics, Southwest University, China

2. Chongqing Normal University, China

3. School of Science, Southwest University of Science and Technology, China

4. Southwest University, China

Abstract

Abstract Batch effects explain a large part of the noise when merging gene expression data. Removing irrelevant variations introduced by batch effects plays an important role in gene expression studies. To obtain reliable differential analysis results, it is necessary to remove the variation caused by technical conditions between different batches while preserving biological variation. Usually, merging data directly with batch effects leads to a sharp rise in false positives. Although some methods of batch correction have been developed, they have some drawbacks. In this study, we develop a new algorithm, adjustment mean distribution-based normalization (AMDBNorm), which is based on a probability distribution to correct batch effects while preserving biological variation. AMDBNorm solves the defects of the existing batch correction methods. We compared several popular methods of batch correction with AMDBNorm using two real gene expression datasets with batch effects and analyzed the results of batch correction from the visual and quantitative perspectives. To ensure the biological variation was well protected, the effects of the batch correction methods were verified by hierarchical cluster analysis. The results showed that the AMDBNorm algorithm could remove batch effects of gene expression data effectively and retain more biological variation than other methods. Our approach provides the researchers with reliable data support in the study of differential gene expression analysis and prognostic biomarker selection.

Funder

National Natural Science Foundation of China

Basic Science and Frontier Technology Research Project of Chongqing

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Agnostic Random Weighting for Out-of-Distribution Generalization;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. A Drug Repurposing Pipeline Based on Bladder Cancer Integrated Proteotranscriptomics Signatures;Urothelial Carcinoma;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3