A comprehensive survey for human transcription factors on expression, regulation, interaction, phenotype and cancer survival

Author:

Hu Hui1ORCID,Zhang Qiong1,Hu Fei-Fei1ORCID,Liu Chun-Jie1,Guo An-Yuan1ORCID

Affiliation:

1. Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Abstract Transcription factors (TFs) act as key regulators in biological processes through controlling gene expression. Here, we conducted a systematic study for all human TFs on the expression, regulation, interaction, mutation, phenotype and cancer survival. We revealed that the average expression levels of TFs in normal tissues were lower than 50% expression of non-TFs, whereas TF expression was increased in cancers. TFs that are specifically expressed in an individual tissue or cancer may be potential marker genes. For instance, TGIF2LX/Y were preferentially expressed in testis and NEUROG1, PRDM14, SRY, ZNF705A and ZNF716 were specifically highly expressed in germ cell tumors. We found different distributions of target genes and TF co-regulations in different TF families. Some small TF families have huge protein interaction pairs, suggesting their central roles in transcriptional regulation. The bZIP family is a small family involving many signaling pathways. Survival analysis indicated that most TFs significantly affect survival of one or more cancers. Some survival-related TFs were also specifically highly expressed in the corresponding cancer types, which may be potential targets for cancer therapy. Finally, we identified 43 TFs whose mutations were closely correlated to survival, suggesting their cancer-driven roles. The systematic analysis of TFs provides useful clues for further investigation of TF regulatory mechanisms and the role of TFs in diseases.

Funder

National Natural Science Foundation of China

Hubei Province Postdoctoral Innovation Research Funding

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference56 articles.

1. Transcription factors: an overview;Latchman;Int J Exp Pathol,1993

2. A decade of transcription factor-mediated reprogramming to pluripotency;Takahashi;Nat Rev Mol Cell Biol,2016

3. Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders;Boyadjiev;Clin Genet,2000

4. Natural selection on protein-coding genes in the human genome;Bustamante;Nature,2005

5. Patterns of evolutionary constraints on genes in humans;De;BMC Evol Biol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3