Genome-wide hierarchical mixed model association analysis

Author:

Hao Zhiyu1,Gao Jin2,Song Yuxin2,Yang Runqing3ORCID,Liu Di1

Affiliation:

1. Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences

2. Wuxi Fisheries College, Nanjing Agricultural University

3. Research Centre for Aquatic biotechnology, Chinese Academy of Fishery Sciences

Abstract

Abstract In genome-wide mixed model association analysis, we stratified the genomic mixed model into two hierarchies to estimate genomic breeding values (GBVs) using the genomic best linear unbiased prediction and statistically infer the association of GBVs with each SNP using the generalized least square. The hierarchical mixed model (Hi-LMM) can correct confounders effectively with polygenic effects as residuals for association tests, preventing potential false-negative errors produced with genome-wide rapid association using mixed model and regression or an efficient mixed-model association expedited (EMMAX). Meanwhile, the Hi-LMM performs the same statistical power as the exact mixed model association and the same computing efficiency as EMMAX. When the GBVs have been estimated precisely, the Hi-LMM can detect more quantitative trait nucleotides (QTNs) than existing methods. Especially under the Hi-LMM framework, joint association analysis can be made straightforward to improve the statistical power of detecting QTNs.

Funder

Chinese Academy of Fishery Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3