DeepDTAF: a deep learning method to predict protein–ligand binding affinity

Author:

Wang Kaili1,Zhou Renyi2,Li Yaohang3,Li Min2ORCID

Affiliation:

1. Central China Normal University, China

2. School of Computer Science and Engineering, Central South University, China

3. Department of Computer Science at Old Dominion University, Norfolk, USA

Abstract

Abstract Biomolecular recognition between ligand and protein plays an essential role in drug discovery and development. However, it is extremely time and resource consuming to determine the protein–ligand binding affinity by experiments. At present, many computational methods have been proposed to predict binding affinity, most of which usually require protein 3D structures that are not often available. Therefore, new methods that can fully take advantage of sequence-level features are greatly needed to predict protein–ligand binding affinity and accelerate the drug discovery process. We developed a novel deep learning approach, named DeepDTAF, to predict the protein–ligand binding affinity. DeepDTAF was constructed by integrating local and global contextual features. More specifically, the protein-binding pocket, which possesses some special properties for directly binding the ligand, was firstly used as the local input feature for protein–ligand binding affinity prediction. Furthermore, dilated convolution was used to capture multiscale long-range interactions. We compared DeepDTAF with the recent state-of-art methods and analyzed the effectiveness of different parts of our model, the significant accuracy improvement showed that DeepDTAF was a reliable tool for affinity prediction. The resource codes and data are available at https: //github.com/KailiWang1/DeepDTAF.

Funder

National Natural Science Foundation of China

Hunan Provincial Science and Technology Program

Degree & Postgraduate Education Reform Project of Hunan Province

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3