Learning spatial structures of proteins improves protein–protein interaction prediction

Author:

Song Bosheng1,Luo Xiaoyan12,Luo Xiaoli13,Liu Yuansheng1,Niu Zhangming2,Zeng Xiangxiang1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410012, Hunan, China

2. MindRank AI ltd., Hangzhou, 311113, Zhejiang, China

3. BioMap, Haidian, 100089, Beijing, China

Abstract

Abstract Spatial structures of proteins are closely related to protein functions. Integrating protein structures improves the performance of protein–protein interaction (PPI) prediction. However, the limited quantity of known protein structures restricts the application of structure-based prediction methods. Utilizing the predicted protein structure information is a promising method to improve the performance of sequence-based prediction methods. We propose a novel end-to-end framework, TAGPPI, to predict PPIs using protein sequence alone. TAGPPI extracts multi-dimensional features by employing 1D convolution operation on protein sequences and graph learning method on contact maps constructed from AlphaFold. A contact map contains abundant spatial structure information, which is difficult to obtain from 1D sequence data directly. We further demonstrate that the spatial information learned from contact maps improves the ability of TAGPPI in PPI prediction tasks. We compare the performance of TAGPPI with those of nine state-of-the-art sequence-based methods, and TAGPPI outperforms such methods in all metrics. To the best of our knowledge, this is the first method to use the predicted protein topology structure graph for sequence-based PPI prediction. More importantly, our proposed architecture could be extended to other prediction tasks related to proteins.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Key Research and Development Program of Changsha

Open Research Projects of Zhejiang Lab

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3